Attraction of the leading scientists to Russian institutions of higher learning, research organizations of the governmental academies of sciences, and governmental research centers of the Russian Federation

Laboratory of Extreme Light Fields

About the laboratory

The project "Extreme Light Sources and Applications" (a.k.a. "ELSA") is designed to create a word-class state-of-the-art physics laboratory at the Nizhniy Novgorod State University named after N. I. Lobachevsky under the supervision of Professor Gérard Mourou. The laboratory will generate light fields of extremely high (up to 5-10 PW) peak capacity, extremely short (about 100 attoseconds) duration, and within an extremely inaccessible – terahertz – frequency range.

The laboratory is comprised of two sections: RT (Roentgen and terahertz) laboratory that specializes in the physics of generation of attosecond impulses and terahertz radiation, and MP (multi-petawatt) laboratory that specializes in the development of a source of laser impulses with a peak capacity of several petawatt. Together, the RT and MP laboratories have created three experimental complexes known as the multipetawatt, attosecond, and terahertz complexes.

Link to official website

Grant Agreement No.: 11.G34.31.0011

Host institution of higher learning:
State educational institution of higher professional education "Nizhniy Novgorod State University named after N. I. Lobachevsky"

Scientific research area:
Physics

Project goal:
To create a world-class state-of-the-art laser physics laboratory at the Nizhniy Novgorod State University named after N. I. Lobachevsky. The laboratory will consist of three complexes known as the multi-petawatt laser complex, terahertz complex, and attosecond research complex.

Key project objectives:
1. To generate light fields characterized by extremely high peak capacity and extremely short impulses and to research their interaction with matter;
2. To develop practical applications for the scientific results obtained in the course of the research project.

Anticipated project outputs:
1. The project will help build the world's most powerful laser complex in Nizhniy Novgorod whose output capacity will amount to 5-10 petawatt;
2. The project will3help develop compact accelerators of charged particles – the most advanced sources for ion-beam (proton) therapy of oncological health conditions and for positron-emission tomography;
3. The terahertz radiation sources developed in the course of the project will find applications in security systems (identification of explosives, narcotics, weapons), in medicine (diagnostics of cancer, dental examinations), and in quality control (electronic chips, pharmaceuticals, food stuffs).

Leading scientist

vu mini 11 

Leading scientist's full name: Mourou, Gérard Albert-Louis

Link to leading scientist's profile

Academic degree and title:
PhD in physics, professor

Job title:
Director of the Institute of Extreme Light Fields in Paris

Field of scientific interests:
Super-intense laser physics

Key scientific achievements:
- In 1985, the leading scientist developed a method of generation of superintense laser impulses (сhirped pulse amplification method);
- In 1994, he experimentally proved the effect of laser radiation self-channeling in the atmosphere that is based on mutual compensation of diffraction blooming of the laser beam and its self-focusing as a consequence of air ionization.

Scientific recognition:
The leading scientist is a member of a number of national and international non-commercial organizations. For example, he is:
- A foreign member of the Russian Academy of Sciences;
- The Director of the National Academy of Engineering (USA);
- A member of the national Academy of Sciences of Austria;
- A member of the Lombardo Institute in Italy;
- A member of the Optical Society of America;
- A member of the Institute of Electrical and Electronics Engineers.

Awards and distinctions:
- R. W. Wood Prize from the Optical Society of America (1995).

Results

Project progress to date:

The project team has completed the assembly of the principal systems of the multi-petawatt laser complex. The terahertz research complex has deployed an optical parametrical amplifier and an optical parametrical transformer. The room that will house a new terahertz spectrometer has been renovated. Ventilation and air-conditioning systems have been installed in the attosecond research complex. Scientific research equipment designated for this complex has been procured.

Main publications:

2013

  1. M. Tani, T. Kinoshita, T. Nagase, K. Horita, C.T. Que, E. Estacio, K. Yamamoto, and M.I. Bakunov, Non-ellipsometric detection of terahertz radiation using heterodyne EO sampling in the Cherenkov velocity matching scheme, Opt. Express 21, 9277-9288 (2013).
  2. A.V. Maslov and M.I. Bakunov, Eddy currents and magnetic moments of planar rings of arbitrary width, J. Phys.: Condens. Matter 25, 056003 (2013).
  3. M. Burza, A. Gonoskov, K. Svensson, F. Wojda, A. Persson, M.Hansson, G. Genoud, M. Marklund, C-G Wahlström, O. Lundh, Laser wakefield acceleration using wire produced double density ramps // Physical Review Special Topics-Accelerators and Beams, v. 16, No 1, 011301, 2013.
  4. A. Pipahl, E.A. Anashkina, M. Toncian, T. Toncian, S.A. Skobelev, A.V. Bashinov, A.A. Gonoskov, O. Willi, A.V. Kim, High-intensity few-cycle laser-pulse generation by the plasma-wakefield self-compression effect // Physical Review E, v. 87, No 3, 033104, 2013.
  5. A. Pipahl, E.A. Anashkina, M. Toncian, T. Toncian, S.A. Skobelev, A.V. Bashinov, A.A. Gonoskov, O. Willi, A.V. Kim, Towards high intensity few-cycle pulses using plasma wakefield self-compression effect // Journal of Physics: Conference Series, 414, 1, 012011, 2013.
  6. L.N. Alexandrov, M.Yu. Emelin, and M.Yu. Ryabikin, Unidirectional current excitation in tunneling ionization of asymmetric molecules, Phys. Rev. A, v.87, No 1, 013444, 2013.
  7. М.Ю. Емелин, М.Ю. Рябикин, О возможностях использования лазеров среднего ИК диапазона для генерации высоких гармоник с субнанометровыми длинами волн в газах, Квантовая электроника, т.43, №3, с.211-216, 2013.
  8. V.A. Antonov, Y.V. Radeonychev, and O. Kocharovskaya, Formation of a single attosecond pulse via interaction of resonant radiation with a strongly perturbed atomic transition, Phys. Rev. Lett., v. 110, No 21, 213903, 2013.
  9. V.A. Antonov, Y.V. Radeonychev, and Olga Kocharovskaya, Formation of ultrashort pulses via quantum interference between Stark split atomic transitions in a hydrogenlike medium // Physical Review A, v. 88, № 5, Art. no. 053849 (2013).
  10. Y.V. Radeonychev, V.A. Antonov, O. Kocharovskaya, Resonant formation of few-cycle pulses by hydro-gen-like atoms with time-dependent resonance // Laser Physics, v. 23, № 8, Art. no. 085303 (2013).
  11. A.V. Korzhimanov, E.S. Efimenko, A.V. Kim, S.V. Golubev, “Production of multiply charged ion beams with an energy of tens of MeV/nucleon by ultrahigh-power laser radiation for nuclear physics problems”, Quantum Electronics 43 (3), 217 – 225 (2013).
  12. S. Bodrov, N. Aleksandrov, M. Tsarev, A. Murzanev, I. Kochetov, and A. Stepanov, Effect of an electric field on air filament decay at the trail of an intense femtosecond laser pulse // Phys. Rev. E. 2013. V. 87. P. 053101.
  13. A. Gonoskov, I. Gonoskov, C. Harvey, A. Ilderton, A. Kim, M. Marklund, G. Mourou, and A. Sergeev, Probing nonperturbative QED with optimally focused laser pulses // Phys. Rev. Lett. - 2013. - Vol. 111,no. 6, Art. no. 060404.
  14. A.V. Bashinov, A.A. Gonoskov, A.V. Kim, M. Marklund, G. Mourou, A.M. Sergeev, “Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account”, Quantum Electronics 43 (4), 291 – 299 (2013)
  15. A.V. Bashinov and A.V. Kim, On the electrodynamic model of ultra-relativistic laser-plasma interactions caused by radiation reaction effects, Phys. of Plasmas 20, 113111 (2013).
  16. Бурдонов К.Ф., Соловьёв А.А., Егоров А.С., Шайкин А.А., Потёмкин А.К. Короткие пространственные фильтры для лазерных систем петаваттного уровня мощности. Квантовая электроника Т43 №11 С1082-1087 (2013).
  17. S. D. Gorelov, E. A. Mashkovich, M. V. Tsarev, and M. I. Bakunov Terahertz Cherenkov radiation from ultrafast magnetization in terbium gallium garnet. Phys. Rev. B 88, 220411(R) (2013)
  18. М. С. Кузьмина, and Е. А. Хазанов, "Мелкомасштабная неустойчивость эллиптически поляризованных волн в среде с кубической нелинейностью," Квантовая электроника 43, 21-28 (2013).
  19. А. А. Кузьмин, О. В. Кулагин, Е. А. Хазанов, А. А. Шайкин, and т. Лазер на неодимовом стекле с энергией импульсов 220 Дж и частотой их следования 0.02 Гц // Квантовая Электроника, №7, с.597-599, 2013, "Лазер на неодимовом стекле с энергией импульсов 220 Дж и частотой их следования 0.02 Гц " Квантовая Электроника 43, 597-599 (2013).
  20. E. A. Хазанов, "Комплексная программа научных исследований Президиума РАН "Экстремальные световые поля и их приложения" 2012 – 2014 гг. ," Квантовая электроника, 43, 189 (2013).

2012

  1. M.I. Bakunov, M.V. Tsarev, and E.A. Mashkovich, Terahertz difference-frequency generation by tilted amplitude front excitation, Opt. Express 20, 28573-28585 (2012).
  2. G.A. Mourou, N.J. Fisch, V.M. Malkin, Z. Toroker, E.A. Khazanov, A.M. Sergeev, T. Tajima, B. Le Garrec, Exawatt-Zettawatt pulse generation and applications, Opt. Commun. 285, 720-724 (2012).
  3. M.I. Bakunov, R.V. Mikhaylovskiy, and S B. Bodrov, Probing ultrafast optomagnetism by terahertz Cherenkov radiation, Phys. Rev. B 86, 134405 (2012).
  4. M.I. Bakunov, E.A. Mashkovich, M.V. Tsarev, and S.D. Gorelov, Efficient Cherenkov-type terahertz generation in Si-prism-LiNbO3-slab structure pumped by nanojoule-level ultrashort laser pulses, Appl. Phys. Lett. 101, 151102 (2012).
  5. M. Tani, M. I. Bakunov, K. Yamamoto, K. Horita, T. Kinoshita, and T. Nagase, Detection of terahertz pulsed radiation by using heterodyne electro-optic sampling scheme, IEEJ Trans. Fundamentals Mater. 132, 727-733 (2012).
  6. S. Yu. Mironov, V. V. Lozhkarev, V. N. Ginzburg, I. V. Yakovlev, G. Luchinin, A. Shaykin, E. A. Khazanov, A. Babin, E. Novikov, S. Fadeev, A. M. Sergeev, and G. A. Mourou, Second-harmonic generation of super powerful femtosecond pulses under strong influence of cubic nonlinearity, IEEE J. Sel. Top. Quantum Electron. 18, 7-13 (2012)
  7. S. B. Bodrov, I. E. Ilyakov, B. V. Shishkin, and A. N. Stepanov, Efficient terahertz generation by optical rectification in Si-LiNbO3-air-metal sandwich structure with variable air gap, Appl. Phys. Lett. 100, 201114 (2012).
  8. S.B. Bodrov, D.I. Kulagin, Yu.A. Malkov, A.A. Murzanev, A.I. Smirnov and A.N. Stepanov, Initiation and channelling of a microwave discharge by a plasma filament created in atmospheric air by an intense femtosecond laser pulse, J. Phys. D: Appl. Phys. 45, 045202 (2012).
  9. V. V. Strelkov, M. A. Khokhlova, A. A. Gonoskov, I. A. Gonoskov, and M. Yu. Ryabikin, High-order harmonic generation by atoms in an elliptically polarized laser field: Harmonic polarization properties and laser threshold ellipticity, Physical Review A. 86, 013404 (2012).
  10. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, Cryogenic Faraday isolator with a disk-shaped magneto-optical element, JOSA B, Vol. 29, Issue 4, pp. 786-792 (2012)
  11. A. G. Vyatkin and E. A. Khazanov, Thermally induced scattering of radiation in laser ceramics with arbitrary grain size, JOSA B, Vol. 29, Issue 12, pp. 3307-3316 (2012)
  12. I. Snetkov, A. Vyatkin, O. Palashov, and E. Khazanov, Drastic reduction of thermally induced depolarization in CaF2 crystals with [111] orientation, Optics Express 20, 13357-13367 (2012).
  13. A. A. Kuzmin, D. E. Silin, A. A. Shaykin, I. E. Kozhevatov, and E. A. Khazanov, Simple method of measurement of phase distortions in laser amplifiers, JOSA B 29, 1152-1156 (2012).
  14. O. V. Palashov, D. S. Zheleznov, A. V. Voitovich, V. V. Zelenogorsky, E. E. Kamenetsky, E. A. Khazanov, R. M. Martin, K. L. Dooley, L. Williams, A. Lucianetti, V. Quetschke, G. Mueller, D. H. Reitze, D. B. Tanner, E. Genin, B. Canuel, and J. Marque, High-vacuum-compatible high-power Faraday isolators for gravitational-wave interferometers, JOSA B 29, 1784-1792 (2012).
  15. J. Abadie at all, Search for gravitational waves from low mass compact binary coalescence in LIGO’s sixth science run and Virgo’s science runs 2 and 3, Phys. Rev. D 85, 082002 (2012).
  16. J. Abadie at all, All-sky search for periodic gravitational waves in the full S5 LIGO data, Phys. Rev. D 85, 022001 (2012).
  17. Katherine L. Dooley at all, Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers, Review of Scientific Instruments 83, 0331092012 (2012).
  18. Kuzmin А.А., Khazanov Е.А., and Shaykin А.А., Pulse-periodic operation of large-aperture neodymium glass laser amplifiers, Quantum Electronics 42, 283-291 (2012).

2011

  1. G.A. Mourou, N.J. Fisch, V.M. Malkin, Z. Toroker, E.A. Khazanov, A.M. Sergeev, T. Tajima, and B. Le Garrec, Exawatt-Zettawatt pulse generation and applications, Opt. Commun. (2011).
  2. Муру Ж., Сергеев А.М., Коржиманов А.В., Гоносков А.А., Хазанов Е.А. Экстремальные световые поля и их фундаментальные приложения // Вестник РАН, 2011. Т. 81. № 6. С. 502-509.
  3. Коржиманов А.В., Гоносков А.А., Хазанов Е.А., Сергеев А.М. Горизонты петаваттных лазерных комплексов // УФН, 2011. Т. 181. С. 9–32.
  4. M.I. Bakunov, S.B. Bodrov, and E.A. Mashkovich, Terahertz generation with tilted-front laser pulses: dynamic theory for low-absorbing crystals, JOSA B 28, 1724-1734 (2011).
  5. M. Tani, K. Horita, T. Kinoshita, C. T. Que, E. Estacio, K. Yamamoto, and M. I. Bakunov, Efficient electro-optic sampling detection of terahertz radiation via Cherenkov phase matching, Opt. Express 19, 19901-19906 (2011).
  6. V. Strelkov, A. Gonoskov, I. Gonoskov, and M. Ryabikin, Origin for ellipticity of high-order harmonics generated in atomic gases and the sub-laser-cycle evolution of harmonic polarization, Phys. Rev. Lett. 107, 043902 (2011).
  7. A.A. Gonoskov, A.V. Korzhimanov, A.V. Kim, M. Marklund, A.M. Sergeev, Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses, Phys. Rev. E 84, 046403 (2011).
  8. M. Burza, A. Gonoskov, G. Genoud, A. Persson, K. Svensson, M. Quinn, P. McKenna, M. Marklund, and C.-G. Wahlström, Hollow microspheres as targets for staged laser-driven proton acceleration, New J. Phys. 13, 013030 (2011).
  9. A.A. Soloviev, K.F. Burdonov, V.N. Ginzburg, A.A. Gonoskov, E.V. Katin, A.V. Kim, A.V. Kirsanov, A.V. Korzhimanov, I.Yu. Kostyukov, V.V. Lozhkarev, G.A. Luchinin, A.N. Mal’shakov, M.A. Martyanov, E.N. Nerush, O.V. Palashov, A.K. Poteomkin, A.M. Sergeev, A.A. Shaykin, M.V. Starodubtsev, I.V. Yakovlev, V.V. Zelenogorsky, and E.A. Khazanov, Fast electron generation using PW-class PEARL facility, Nucl. Instr. Meth. Phys. Res. A 653, 35-41 (2011).
  10. S.B. Bodrov, V. Bukin, M.V. Tsarev, A. Murzanev, S. Garnov, N.L. Aleksandrov, and A.N. Stepanov, Plasma filament investigation by transverse optical interferometry and terahertz scattering, Opt. Express 19, 6829-6835 (2011).
  11. F. Cattani, A. Kim, D. Anderson, and M. Lisak, Co-propagating Bose-Einstein condensates and electromagnetic radiation: Emission of mutually localized structures, Phys. Rev. A 83, 013608 (2011).
  12. A.V. Kim and S.A. Skobelev, Few-cycle vector solitons of light, Phys. Rev. A 83, 063832 (2011).
  13. J. Abadie, E. Khazanov, A. Sergeev et al. (LIGO Scientific Collaboration), A search for gravitational waves associated with the August 2006 timing glitch of the Vela pulsar, Phys. Rev. D 83, 042001 (2011).
  14. E.S. Efimenko and A.V. Kim, Strongly coupled regime of ionization-induced scattering in ultrashort laser-matter interactions, Phys. Rev. E 84, 036408 (2011).
  15. E.S. Efimenko, A.V. Kim, and M. Quiroga-Teixeiro, Ionization-induced dynamics of laser-matter interaction in a focused laser pulse: A comparative analysis, Phys. Plasmas 18, 032107 (2011).
  16. J. Abadie, E. Khazanov, A. Sergeev et al. (LIGO Scientific Collaboration, Virgo Collaboration), Beating the spin-down limit on gravitational emission from the Vela pulsar, Astrophys. J. 737, 93 (2011).
  17. J. Abadie, E. Khazanov, A. Sergeev et al. (LIGO Scientific Collaboration, Virgo Collaboration), Search for gravitational wave bursts from six magnetars, Astrophys. J. Lett. 734, L35 (2011).
  18. J. Abadie, E. Khazanov, A. Sergeev et al. (LIGO Scientific Collaboration, Virgo Collaboration), Search for gravitational waves from binary black hole inspiral, merger, and ringdown, Phys. Rev. D 83, 122005 (2011).
  19. E.A. Anashkina, A.V. Andrianov, S.V. Muravyev, and A.V. Kim, All-fiber design of erbium-doped system for tunable two-cycle pulse generation, Opt. Express 19, 20141-20150 (2011).

2010

  1. Бакунов М.И., Царев М.В., Бодров С.Б., Оптическая генерация терагерцовых плазмонов на гребенчатой поверхности металла // Оптика и спектроскопия. 2010. Т. 108, №6. С. 894-900.
  2. R.E. Noskov, A.A. Zharov, and M.V. Tsarev, Generation of widely tunable continuous-wave terahertz radiation using a two-dimensional lattice of nonlinear metallic nanodimers, Phys. Rev. B, 82. P.073404-1 – 073404-4 (2010).
  3. V. I. Eremin, A.V. Korzhimanov, A.V. Kim, Relativistic self-induced transparency effect during ultraintense laser interaction with overdense plasmas: Why it occurs and its use for ultrashort electron bunch generation, Phys. Plasmas, 17, 043102 (2010).
  4. M.I. Bakunov, R.V. Mikhaylovskiy, M. Tani, C.T. Que, A structure for enhanced terahertz emission from a photoexcited semiconductor surface, Appl. Phys. B, 100, 695–698 (2010).
  5. M.I. Bakunov, R.V. Mikhaylovskiy, and M. Tani, Strong interference enhancement of terahertz emission from a photoexcited semiconductor surface, Optics Express 18, no. 21, 22406-22411 (2010).
  6. A. Silaev, M. Yu. Ryabikin, N.V. Vvedenskii, Strong-field phenomena caused by ultrashort laser pulses: Effective one- and two-dimensional quantum-mechanical descriptions, Phys. Rev. A 82, 033416-1-14 (2010).
  7. M.I. Bakunov, A.V. Maslov, A.L. Novokovskaya, A. Kryemadhi, Relativistic effects in radar detection of ionization fronts produced by ultra-high energy cosmic rays, Astroparticle Physics 33, 335-340 (2010).
  8. M.I. Bakunov and S.B. Bodrov, Si-LiNbO3-air-metal structure for concentrated terahertz emission from ultrashort laser pulses, Applied Physics B. V. 98. P. 1-4 (2010).
  9. M.I. Bakunov, R.V. Mikhaylovskiy, S.B. Bodrov, and B.S. Luk'yanchuk, Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding, Opt. Express 18, 1684-1694 (2010).
  10. Третьяков М.Ю., Шкаев А.П., Киселев А.М., Бодров С.Б., Андрианов А.В., Макаров Д.С. Прецизионная стабилизация частоты излучения источника субтерагерцового диапазона частотной гребенкой фемтосекундного лазера // Письма в ЖЭТФ. 2010. Т. 91. В. 5. С. 240-243.
  11. M.Yu. Emelin, M.Yu. Ryabikin, and A.M. Sergeev, Frequency tunable single attosecond pulse production from aligned diatomic molecules ionized by intense laser field, Opt. Express 18, 2269-2278 (2010).
  12. S. Mironov, V. Lozhkarev, V. Ginzburg, I. Yakovlev, G. Luchinin, A. Shaykin, E. Khazanov, A. Babin, E. Novikov, S. Fadeev, A. Sergeev, G. Mourou, Second harmonic generation of super powerful femtosecond pulses at strong influence of cubic nonlinearity, IEEE Journal of Selected Topics in Quantum Electronics. V. PP. Issue 99. 1-7 (2010).

 

Back to top